

Johannesburg Stock Exchange

Post-trade and Information Services

JSE Services Documentation

EMAPI TagWire

Version 1.1

Release Date 17 Feb 2017

Number of Pages 10 (Including Cover Page)

EMAPI Tagwire V1.1.Docx Page 2 / 10

1 Document Control

1.1 Table of Contents

1 DOCUMENT CONTROL ... 2

1.1 Table of Contents ... 2
1.2 About this Document .. 3
1.3 Intended Audience.. 3
1.4 Typographical Conventions .. 3
1.5 Document Information .. 3
1.6 Revision History .. 3
1.7 Related Documents .. 4
1.8 Contact Details ... 4

2 INTRODUCTION ... 5

3 ENCODING ... 6

3.1 Encoding of Primitive Type Values ... 6
3.1.1 Integers ... 6
3.1.2 Fixed-point Number .. 6
3.1.3 Boolean ... 6
3.1.4 String ... 6

3.2 Encoding of Derived Scalar Type Values ... 6
3.3 Encoding of Binary Values ... 7
3.4 Encoding of Structures ... 7

3.4.1 Messages .. 7
3.4.2 Fields .. 7

4 GRAMMAR IN BNF NOTATION .. 10

EMAPI Tagwire V1.1.Docx Page 3 / 10

1.2 About this Document

This document describes the syntax of the TagWire encoding of EMAPI messages body.

The purpose of this document, together with its related documents (see 1.7), is to serve as a
specification of the EMAPI protocol when implementing an EMAPI client to interface to the
JSE’s real-time clearing (RTC) system.

1.3 Intended Audience

The information in this document is aimed towards EMAPI client software developers who
will implement EMAPI message body encoding and decoding.

1.4 Typographical Conventions

Messages, fields or enumerators are presented in the computer style font or

courier new.

1.5 Document Information

Drafted By Post-trade and Information Services

Status Draft

Version 1.1

Release Date 17 Feb 2017

1.6 Revision History

Date Version Description

11 May 2016 1.0 Initial draft created.

17 Feb 2017 1.1 1. Corrected error in BNF grammar. Value ‘F’ was
missing from <hex-digit> definition

2. Added clarification note on encoding for constants.

3. Added note on use of extended generic record
types – see Section 3.4.2.

EMAPI Tagwire V1.1.Docx Page 4 / 10

1.7 Related Documents

Note: The documents in the table below are published on the ITaC website:
https://www.jse.co.za/services/itac

Name Description

Volume PT01 – Post-trade EMAPI
Common.pdf

Describes the semantics and syntax of the common or
session/admin EMAPI protocol messages.

Volume PT02 – Post-trade EMAPI
Clearing.pdf

Describes the semantics and syntax of the clearing or

application messages of the EMAPI protocol.

EmapTransactionsForMember.xml XML definition of all EMAPI protocol messages for
market participants, i.e. clearing and trading
members.

EmapiTransactionsForMember.html HTML file describing the syntax of all EMAPI
protocol messages for market participants, i.e.
clearing and trading members.

EmapiTransactions.xsd The XML Schema that
EmapiTransactionsForMember.xml must
conforms to.

1.8 Contact Details

JSE Limited

One Exchange Square

Gwen Lane, Sandown

South Africa

Tel: +27 11 520 7000

www.jse.co.za

Post Trade and Information Services

ITAC Queries

Email: CustomerSupport@jse.co.za

Clearing specifications disclaimer
Disclaimer: All rights in this document vests in the JSE Limited (“JSE”) and Cinnober Financial
Technology AB (publ) (”Cinnober”). Please note that this document contains confidential and sensitive
information of the JSE and Cinnober and as such should be treated as strictly confidential and
proprietary and with the same degree of care with which you protect your own confidential information
of like importance. This document must only be used by you for the purpose for which it is
disclosed. Neither this document nor its contents may be disclosed to a third party, nor may it be
copied, without the JSE's prior written consent. The JSE endeavours to ensure that the information in
this document is correct and complete but do not, whether expressly, tacitly or implicitly, represent,
warrant or in any way guarantee the accuracy or completeness of the information. The JSE, its officers
and/or employees accept no liability for (or in respect of) any direct, indirect, incidental or consequential
loss or damage of any kind or nature, howsoever arising, from the use of, or reliance on, this
information.

https://www.jse.co.za/services/itac
http://www.jse.co.za/
mailto:CustomerSupport@jse.co.za

EMAPI Tagwire V1.1.Docx Page 5 / 10

2 Introduction

TagWire is the supported encoding of EMAPI message body used in the JSE’s real-time
Clearing (RTC) system.

Note: All EMAPI message bodies are preceded by an EMAPI message header, which among
other things specifies the encoding used.

Features of the format are:

 Non-binary and human readable; the encoding results in a sequence of characters

 UTF-8 is used as character encoding

 Tag-based as opposed to fixed position (parse data is compact)

 Uses separator/delimiters instead of length indicators

 Only 6 reserved characters

EMAPI Tagwire V1.1.Docx Page 6 / 10

Example:
If a fixed-point number field’s value is 12.3 and it has a scaling factor of 1/1 000 000 it will

be encoded as 12300000

3 Encoding

3.1 Encoding of Primitive Type Values

3.1.1 Integers

An integer is encoded as a sequence of ASCII digit characters. If the number is negative,
the minus (i.e. ‘-’) character is appended as the first character in the character sequence.

3.1.2 Fixed-point Number

A fixed-point number is encoded as an integer, i.e. without being scaled according to the
scaling factor.

3.1.3 Boolean

The Boolean values true and false will be encoded with the characters ‘T’ and ‘F’

respectively.

3.1.4 String

A string is encoded using the UTF-8 encoding.

An empty string is encoded using the ‘”’ character.

Reserved characters:
‘=’, ‘[‘, ‘]’, ‘|’, ‘”’ and ‘%’ are reserved as protocol characters.

When any of these reserved characters occurs in a string, they must be replaced with the
character ‘%’ followed by one other character (as specified below) before the string is
encoded:

 ‘=’ is replaced with “%1”

 ‘[‘ is replaced with “%2”

 ‘]’ is replaced with “%3”

 ‘|’ is replaced with “%4”

 ‘”’ is replaced with “%5”

 ‘%’ is replaced with “%%”

Note: After a string has been decoded, the reverse replacement will be done.

3.2 Encoding of Derived Scalar Type Values

An enumerator of an enumeration type is encoded by encoding the value as done for the
type which the enumeration is derived from.

Example:

The string “abc=[]|”%123” is encoded as the character sequence:

“abc%1%2%3%4%5%%123”

Example:
Enumeration Yes with value 1 in the enumeration type YesOrNo (which is derived from
the integer type) is encoded as:

“1”

EMAPI Tagwire V1.1.Docx Page 7 / 10

3.3 Encoding of Binary Values

Binary value (i.e. a sequence of bytes that for example are encoded in non-EMAPI
encoding) is encoded as a sequence of two ASCII hex digit characters.

Note: ASCII hex digit characters that are letters must be in upper-case.

3.4 Encoding of Structures

3.4.1 Messages

Messages are started (tagged) with an encoded positive integer ID (which is unique among
all messages). The ID is followed by the ‘=’ character that in turn is followed by the start
delimiter ‘[’ character. Then the fields are encoded as described in Section 3.4.2 below, and
these are separated by the ‘|’ character. The message is terminated by the end delimiter ‘]’
character.

Note: The fields of a message are allowed to be encoded in any order.

Note: The start/end delimiter characters are always present (even though the message has no
fields or the encoding of the fields did not result in any characters).

3.4.2 Fields

Note: Fields that have no value set (null value) must not be encoded.

Fields are started (tagged) with an encoded positive integer ID (which is unique among the
fields in a message). The ID is followed by the ‘=’ character that in turn is followed by the
encoded field’s value encoded as described below.

Note: Fields inside a (generic) record (array) field have their own ID namespace, i.e., fields
inside a record may have the same ID as fields that are “siblings” to a (generic) record
(array) field.

a) Primitive type, derived scalar type and binary fields

Primitive, derived scalar type and binary field values are encoded as described in
sections 3.1, 3.2 and 3.3.

Example:

The binary data {0, 7, 15, 16, 42, 255} is encoded as the character sequence:

“00070F102AFF”

Example:
A message with ID 100 (with no fields) is encoded as:

100=[]

Examples:
1) A message with ID 100 and with following fields:

 Integer type field with ID 1 which value is 42

 Boolean type field with ID 2 which value is true

 Enumeration type field with ID 3 which value is Yes (which derived type
value is of the enumeration type YesOrNo (which is derived from the integer
type)

 is encoded as:

 100=[1=42|2=T|3=1]

EMAPI Tagwire V1.1.Docx Page 8 / 10

b) Record type fields

Record type field values are started with the start delimiter ‘[’ character and terminated
by the end delimiter ‘]’ character. Fields inside a record field are encoded as fields in a
message.

c) Generic record type fields

Note: Not applicable to EMAPI for JSE.

Generic record type field values are encoded as a message.

Note: Generic Record Type fields are not currently used in JSE EMAPI, i.e. a sub-object in a
message will always be of the exact type stated in the message spec, it will not be of an
"extending" type. So the sequence "100=[1=200=[..." will not occur, it will always be
"100=[1=[..."

Examples:
1) A message with ID 100 and with a generic record type field with ID 1 which value
 is a message with ID 200 which in its turn has the following fields:

 integer type field with ID 1 which value is 42

 string type field with ID 2 which value is “” (i.e. empty string)
 is encoded as:

 100=[1=200=[1=42|2=”]]

2) A message with ID 100 and with a generic record type field with ID 1 which value
 is a message with ID 300 which extends the above message with ID 200 with one
 field and thereby has following fields:

 integer type field with ID 1 which value is -3

 string type field with ID 2 which value is “Hello”

 boolean type field with ID 3 which value is true
 is encoded as:

 100=[1=300=[1=-3|2=Hello|3=T]]

3) A message with ID 100 and with a generic record type field with ID 1 which value
 is not set (a.k.a. is null) is encoded as:

 100=[]

2) A message with ID 100 with an integer type field with ID 1 which value is not set
 (a.k.a. is null) is encoded as:

 100=[]

Examples:
1) A message with ID 100 and with following fields:

 integer type field with ID 1 which value is 42

 record type field with ID 2 which in its turn has an integer type field with ID 1
which value is -3

 is encoded as:

 100=[1=42|2=[1=-3]]

2) A message with ID 100 with a record type field with ID 2 which value is not set
 (a.k.a. is null) is encoded as:

 100=[]

EMAPI Tagwire V1.1.Docx Page 9 / 10

c)d) Array type fields

Array type field values are started with the start delimiter ‘[’ character. Then the array
elements are encoded as described above and these are separated by the ‘|’ character.
The array is terminated by the end delimiter ‘]’ character.

Note: Note: The array elements are encoded in the same order as the elements are indexed in
the array (i.e. the array elements have a fixed position).

Array elements that are not set (a.k.a. a null value) are encoded as ‘’ (i.e. an empty
string). An array type fields value which is empty (i.e. an array that has no elements) is
encoded using the ‘”’ character.

Examples:
1) A message with ID 100 and with following fields:

 string array type field with ID 1 which value is
[“A”, “”, null]

 record array type field
(where the record has one integer type field with ID 1 and one boolean type
field with ID 2)
with 2 array elements where the fields values in:

 the first array element are 42 respectively true

 the second array element are -3 respectively false

 generic record array type field with ID 3 with 2 array elements with
below values:

 the first array element is a message with ID 200 which
in turn has following fields:

 integer type field with ID 1 which value is 72

 string type field with ID 2 which value is “B”

 the second array element is a message with ID 300 which
extends the above message with ID 200 with one field and
thereby has following fields:

 integer type field with ID 1 which value is -1

 string type field with ID 2 which value is “C”

 boolean type field with ID 3 which value is false
 is encoded as (with extra whitespace added between the fields of ID 100 to present it
 more readable):

 100=[1=[A|”|]|

 2=[[1=42|2=T]|[1=-3|2=F]]|

 3=[200=[1=72|2=B]|300=[1=-1|2=C|3=F]]]

2) A message with ID 100 and a string array type field with ID 1 which value is [null] (i.e.
 the array consists of one element which value is not set (a.k.a. is null) is encoded as:

 100=[1=[]]

3) A message with ID 100 and an array type field with ID 1 with zero array elements is
 encoded as:

 100=[1=”]

4) A message with ID 100 and an array type field with ID 1 which value is not set (a.k.a.
 is null) is encoded as:

 100=[]

Note: The Constants have a declared type and are encoded according to the value field -

NOT the name or encodingId fields.

EMAPI Tagwire V1.1.Docx Page 10 / 10

4 Grammar in BNF Notation

The BNF
1
 description of EMAPI TagWire is given below:

1
 Backus Normal Form (BNF) is a notation technique for context-free grammars that is often used to describe the syntax of
computer programming languages and communication protocols. Context-free grammars are often parsed using the recursive
descent parser pattern.

<message> ::= <tag> ‘=’ <message-body>

<tag> ::= <natural-number>

<natural-number> ::= <non-zero-digit> | <non-zero-digit> <digits>

<non-zero-digit> ::= ‘1’|‘2’|‘3’|‘4’|‘5’|‘6’|‘7’|‘8’|‘9’

<digit> ::= ‘0’ <non-zero-digit>

<digits> ::= <digit>

| <digit> <digits>

<message-body> ::= ‘[’ <fields> ‘]’ | ‘[’ ‘]’

<fields> ::= <field>

| <field> ‘|’ <fields>

<field> ::= <tag> ‘=’ <value>

<value> ::= <primitive-data-value> | <composite-data-value>

<primitive-data-value> ::= <integer> | <boolean> | <string> |

 <binary>

<integer> ::= <natural-number> | ‘0’ | ‘-’ <natural-number>

<boolean> ::= ‘T’ | ‘F’

<string> ::= <characters> | <empty-string>

<characters> ::= <non-reserved-character> <characters>

 | <escape-characters> <characters>

<non-reserved-character> ::= any unicode character except;

‘%’ | ‘=’ | ‘[’ | ‘]’ | ‘|’ | ‘”’

<escape-characters> ::= ‘%1’ | ‘%2’ | ‘%3’ | ‘%4’ | ‘%5’| ‘%%’

<empty-string> ::= ‘”’

<binary> ::= <hex-digit> <hex-digit>

| <hex-digit> <hex-digit> <binary>

<hex-digit> ::= ‘0’|‘1’|‘2’|‘3’|‘4’|‘5’|‘6’|‘7’|‘8’|‘9’

 |‘A’|‘B’|‘C’|‘D’|‘E’|‘F’

<composite-data-value> ::= <array> | <message-body> | <message>

<array> ::= ‘[’ <array-elements> ‘]’ | <empty-array>

<array-elements> ::=

<integer-array-elements> | <boolean-array-elements> |

<string-array-elements> | <message-body-array-elements> |

<message-array-elements>

<integer-array-elements> ::= <integer>

| <integer> ‘|’ <integer-array-elements>

<boolean-array-elements> ::= <boolean>

| <boolean> ‘|’ <boolean-array-elements>

<string-array-elements> ::= <string>

| <string> ‘|’ <string-array-elements>

<message-body-array-elements> ::= <message-body>

| <message-body> ‘|’ <message-body-array-elements>

<message-array-elements> ::= <message>

| <message> ‘|’ <message-array-elements>

<empty-array> ::= ‘”’

	Johannesburg Stock Exchange
	Post-trade and Information Services
	JSE Services Documentation
	1 Document Control
	1.1 Table of Contents
	1.2 About this Document
	1.3 Intended Audience
	1.4 Typographical Conventions
	1.5 Document Information
	1.6 Revision History
	1.7 Related Documents
	1.8 Contact Details

	2 Introduction
	3 Encoding
	3.1 Encoding of Primitive Type Values
	3.1.1 Integers
	3.1.2 Fixed-point Number
	3.1.3 Boolean
	3.1.4 String

	3.2 Encoding of Derived Scalar Type Values
	3.3 Encoding of Binary Values
	3.4 Encoding of Structures
	3.4.1 Messages
	3.4.2 Fields

	4 Grammar in BNF Notation

